You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 April 1998Up-converted light emission and switching in dye-doped polymer waveguides
We report the results of study of upconverted emission in the band 520 to 600 nm from waveguides made of poly(methyl methacrylate) (PMMA) doped with laser dye 4- (Dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)4H-pyran known as DCM. The emission could be excited using CW laser pumping within the range 630 nm to 800 nm with intensity below 1 kW/cm2. The excitation mechanism, instead of the two- photon absorption, more likely involves exciton-like localized states below the S1 singlet state. These localized states, being excited by low energy photons can assist in populating upper singlet states according to the scheme of the excited state absorption. We also pay special attention to material photobleaching that accompanies upconverted emission. This effect leads to refractive index decrease at the wavelength of the pump. Computer simulations based on numerical solutions of nonlinear propagation equation as well as experiments show that photobleaching leads to irreversible branching of optical pump beam that propagates through a dye-doped polymer waveguide.
The alert did not successfully save. Please try again later.
Sergey S. Sarkisov, Aaron Wilkosz, Andre Taylor, Ronald D. Clark, Benjamin G. Penn, "Up-converted light emission and switching in dye-doped polymer waveguides," Proc. SPIE 3281, Polymer Photonic Devices, (17 April 1998); https://doi.org/10.1117/12.305436