You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 April 1998Strain effects in CdTe(111) layers on tilted Si(100) substrate by MBE
We obtained the photoluminescence spectra for CdTe(111) grown on Si(100) tilted toward <011> 1 degree, 2 degrees, 4 degrees and 8 degrees by MBE before and after RTA. It is caused by the strain due to the lattice mismatch between CdTe epitaxial layer and the substrate that the shift of peaks form CdTe(111)/Si(100) epitaxial layer was observed comparing with that of bulk. We could guess the crystal structures of the CdTe(111) epitaxial layers from the strains calculated from the quantity of the shifts. We found that the crystal structure of CdTe changed from the cubic in bulk to the tetragonal in strained as-grown samples, and from the tetragonal to the trigonal after RTA. It is caused by the different strain type that the structures are different before and after RTA because the misfit for atomic distance is dependent on the direction between CdTe(111) and Si(100). We found that the inplain compressive strains change from asymmetry to symmetry about (111) direction in CdTe(111) epitaxial layer after RTA.
The alert did not successfully save. Please try again later.
Tae Won Kang, J. H. Leem, Y. B. Hou, H. C. Jeon, J. K. Hyun, Ho-Young Lee, Myung-Soo Han, Suk-Ryong Hahn, "Strain effects in CdTe(111) layers on tilted Si(100) substrate by MBE," Proc. SPIE 3287, Photodetectors: Materials and Devices III, (8 April 1998); https://doi.org/10.1117/12.304488