You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 June 1998Analytical model for a passive stand-off layer damping treatment applied to an Euler-Bernoulli beam
Passive constrained layer (PCL) damping treatments have been shown to be a very effective and reliable method for the damping of structures and have been implemented successfully in many commercial and defense designs for the aerospace and automotive industries. A conventional passive constrained layer damping treatment consists of a viscoelastic layer sandwiched between the vibrating structure and a cover layer. In a passive stand-off layer (PSOL) damping treatment, a stand-off or spacer layer is added to a conventional passive constrained layer damping treatment between the vibrating structure and the viscoelastic layer. The addition of this stand-off layer increases the distance of the viscoelastic and constraining layers from the neutral axis of the vibrating structure. This is thought to enhance damping by increasing the shear angle of the viscoelastic layer. To investigate how the bending and shearing rigidities of the stand-off layer (SOL) affect the damping performance, an analytical model has been developed for a PSOL damping treatment applied to an Euler-Bernoulli beam. In this paper, the equations of motion are derived and solved. The resulting simulations of the frequency response are then discussed.
Jessica M. Yellin andI. Y. Shen
"Analytical model for a passive stand-off layer damping treatment applied to an Euler-Bernoulli beam", Proc. SPIE 3327, Smart Structures and Materials 1998: Passive Damping and Isolation, (16 June 1998); https://doi.org/10.1117/12.310697
The alert did not successfully save. Please try again later.
Jessica M. Yellin, I. Y. Shen, "Analytical model for a passive stand-off layer damping treatment applied to an Euler-Bernoulli beam," Proc. SPIE 3327, Smart Structures and Materials 1998: Passive Damping and Isolation, (16 June 1998); https://doi.org/10.1117/12.310697