You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 July 1998Sensing damage in carbon fiber polymer-matrix composites during fatigue by electrical resistance measurement
Self-monitoring of static/fatigue damage and dynamic strain in a continuous crossply carbon fiber polymer-matrix composite by electrical resistance (R) measurement was achieved. With a static/cyclic tensile stress along the 0 degree direction, R in this direction and R perpendicular to the fiber layers were measured.Upon static tension to failure, R in the 0 direction first decreased and then increased, while R perpendicular to the fiber layers increased monotonically. Upon cyclic tension, R decreased reversibly, while R perpendicular to the fiber layers increased reversibly, though R in both directions changed irreversibly by a small amount after the first cycle. Upon fatigue testing at a maximum stress of 57 percent of the fracture stress, R irreversibly increased both in spurts and continuously, due to 0 degree fiber breakage, which started at 15 percent of the fatigue life, while R irreversibly increased both in spurts and continuously, due to delamination, which started at 33 percent of the fatigue life. The peak R in a cycle irreversibly decreased, while the minimum R at the end of a cycle irreversibly increased during the first 0.1 percent of the fatigue life, due to irreversible increases in the degree of 0 fiber alignment. R became noisy starting at 87 percent of the fatigue life, whereas R became noisy starting at 50 percent of the fatigue life. For a unidirectional composite, R increased reversibly upon tension and decreased reversibly upon compression in the 0 direction, due to piezoresistivity.
Xiaojun Wang andDeborah D. L. Chung
"Sensing damage in carbon fiber polymer-matrix composites during fatigue by electrical resistance measurement", Proc. SPIE 3330, Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, (21 July 1998); https://doi.org/10.1117/12.317004
The alert did not successfully save. Please try again later.
Xiaojun Wang, Deborah D. L. Chung, "Sensing damage in carbon fiber polymer-matrix composites during fatigue by electrical resistance measurement," Proc. SPIE 3330, Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, (21 July 1998); https://doi.org/10.1117/12.317004