You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 June 1998Materials for reflective multilayer coatings for EUV wavelengths
By operating at wavelength near 10-20 nm, EUV lithography can allow for imaging below 100 nm with limited diffractive losses. The reflective optics involved in such systems require multilayer coatings with stringent demands on throughput, uniformity, and stability. The performance of such multilayers is dependent on the optical properties leading to multilayer stacks requiring up to 40 layer pairs. An exhaustive study of potential material combinations has been performed. Detailed results from the investigation of candidate EUV reflective multilayers is presented. Beryllium and silicon are unique in the 10 to 20 nm wavelength range as materials with high index values and suitably low absorption. The best performing coatings within this range are therefore combinations of these two materials with low absorbing low index films, including many refractory metals. For each multilayer coating type investigated, the wavelength of maximum reflectivity has been optimized, and stress, thickness variation, scattering, and interfacial layer formation effects have been characterized.
The alert did not successfully save. Please try again later.
Bruce W. Smith, Parthasarathy Venkataraman, Santosh K. Kurinec, R. Scott Mackay, "Materials for reflective multilayer coatings for EUV wavelengths," Proc. SPIE 3331, Emerging Lithographic Technologies II, (5 June 1998); https://doi.org/10.1117/12.309614