You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 June 1998Preventing sidelobe printing in applying attenuated phase-shift reticles
One major limitation of applying attenuated phase shift mask (PSM) is sidelobe printing. The sidelobe is caused by constructive interference of the first order of diffraction maximum from nearby features, plus the electrical fields from semi-transparent materials in the surrounding area. The impact of defocus, lens aberration, and layout design on sidelobe printing are discussed. A detailed comparison between printed wafers and aerial image simulations shows how these factors affect sidelobe printing. Data show tight control on both the third and the fifth order aberrations is critical in PSM application. Since the degree of coherence and the stepper's response to coherence transfer function will significantly affect the performance of PSM, tests on phase shift mask are necessary to qualify a stepper. An alternative approach that uses attenuated rim shifter PSM to prevent sidelobe printing is presented and discussed.
The alert did not successfully save. Please try again later.
Z. Mark Ma, Andrew Andersson, "Preventing sidelobe printing in applying attenuated phase-shift reticles," Proc. SPIE 3334, Optical Microlithography XI, (29 June 1998); https://doi.org/10.1117/12.310783