You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 June 1998Restricted surface matching: a new registration method for medical images
Since its introduction to neurological surgery in the early 1980's, computer assisted surgery (CAS) with and without robotics navigation has been applied to several medical fields. The common issue all CAS systems is registration between two pre-operative 3D image modalities (for example, CT/MRI/PET et al) and the 3D image references of the patient in the operative room. In Wayne State University, a new way is introduced for medical image registration, which is different from traditional fiducial point registration and surface registration. We call it restricted surface matching (RSM). The method fast, convenient, accurate and robust. It combines the advantages from two registration methods mentioned before. Because of a penalty function introduced in its cost function, it is called `RSM'. The surface of a 3D image modality is pre-operatively extracted using segmentation techniques, and a distance map is created from such surface. The surface of another 3D reference is presented by a cloud of 3D points. At least three rough landmarks are used to restrict a registration not far away from global minimum. The local minimum issue is solved by use of a restriction for in the cost function and larger number of random starting points. The accuracy of matching is achieved by gradually releasing the restriction and limiting the influence of outliers. It only needs about half a minute to find the global minimum (for 256 X 256 X 56 images) in a SunSparc 10 station.
The alert did not successfully save. Please try again later.
JianXing Gong, Lucia J. Zamorano, Zhaowei Jiang, Lutz P. Nolte, Fernando Diaz M.D., "Restricted surface matching: a new registration method for medical images," Proc. SPIE 3338, Medical Imaging 1998: Image Processing, (24 June 1998); https://doi.org/10.1117/12.310831