You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 September 1998Micromachined silicon deformable mirror
A new silicon deformable mirror design is presented which provides high reflectivity, an optical quality continuous surface, and high intensity handling capacity. Its features make it useful for a wide range of devices including telescopes, leasers, and photolithographic systems. The mirror architecture is similar to commercial electrostrictive deformable mirrors. A focus corrector built using this architecture exhibited 2.25 microns of actuation at the center through the application of 100v corresponding to a radius of curvature of -2.4m. A 30 micrometers thick 1cm diameter silicon mirrors exhibited its first mechanical resonance at 2.7kHz. A mirror coated with 100nm of gold was shown to be able to withstand 100kW/cm2 of continuous wave 1064nm intensity for 10 minutes without observable degradation. An active mode-matching experiment was performed showing that 99.5 percent of a Nd:YAG beam could be coupled to a finesse 4000 ring cavity.
The alert did not successfully save. Please try again later.
Justin D. Mansell, Robert L. Byer, "Micromachined silicon deformable mirror," Proc. SPIE 3353, Adaptive Optical System Technologies, (11 September 1998); https://doi.org/10.1117/12.321668