Paper
13 August 1998 Overview of the Distributed Mission Training Integrated Threat Environment project
Author Affiliations +
Abstract
The Joint Synthetic Battlespace (JSB) envisioned within the Department of Defense modeling and simulation master plan requires a distributed virtual environment (DVE) wide consistent threat environment to achieve a useful mission rehearsal, training, test and evaluation capability. To achieve this objective, all threats in the DVE must appear at compatible levels of fidelity to all the entities operating in the DVE and they must interact with human- operated and computer-controlled entities in a realistic fashion. Achieving this goal is not currently possible for two reasons. First, each primary aircraft simulator training system developer has created their own threat system and made their own modeling decisions to support a specific user for a select few predetermined conditions. This traditional threat simulation approach is expensive and leads to ongoing difficulties in maintaining threat currency as intelligence updates are made, new weapons are introduced and new theaters of operation are identified. Second, the threat system interaction on a distributed network must be coordinated. The individualized nature of current threat systems precludes the possibility of introducing coordinated threats. The Distributed Mission Training Integrated Threat Environment (DMTITE) project is developing an effective solution to these issues. The DMTITE project is identifying the requirements for a distributed threat environment and building a demonstrator DOD High Level Architecture compatible system that can provide realistic threats for pilots to train against. The DMTITE prototype will instantiate a variety of threats for use in distributed training scenarios, including surface threats, air threats, radars, and jamming systems. A key element of the system will be the provision of realistic behaviors for the threat systems. We based DMTITE on a general software design methodology and software architecture for computer-generated forces (CGFs) that naturally supports `variety' in performance for a given type of CGF and allows us to organize and build vastly different CgFs within the same architecture. This approach allows us to provide a range of threat skill levels for each threat modeled within the DMTITE system and we can readily expand the system to accommodate peer-to-peer communication and group tactics. In this paper, we present a brief overview of the DMTITE requirements and a component-wise decomposition of the system. We also describe the structure of the major components of the DMT threat systems' decision mechanism. The progress of the initial prototype will also be discussed.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Martin R. Stytz, Sheila B. Banks, and Eugene Santos Jr. "Overview of the Distributed Mission Training Integrated Threat Environment project", Proc. SPIE 3367, Modeling and Simulating Sensory Response for Real and Virtual Environments, (13 August 1998); https://doi.org/10.1117/12.317562
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Computer architecture

Driver's vision enhancers

Computing systems

Error control coding

Virtual reality

Radar

Software engineering

Back to Top