You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 September 1998Genetic algorithms for automatic algorithm and parameter selection in ATR applications
One of the difficulties that has been apparent in applying image processing algorithms not just for automatic target recognition but also for associated tasks in image processing and understanding is that of the optimal choice of parameters and algorithms. Firstly we must select an algorithm to use and secondly the actual parameters that are required by that algorithm. It is also the case that using a chosen algorithm on a different image class yields results of a totally different quality, here we consider three image classes, namely infra-red linescan, dd5-Russian satellite and SPOT imagery. We are now exploring the use of genetic algorithms for the purpose of parameter and algorithm selection and will show how the approach can successfully obtain results which in the past have tended to be obtained somewhat heuristically.
The alert did not successfully save. Please try again later.
Paul G. Ducksbury, Margaret J. Varga, P. J. Kent, Stephen B. Foulkes, David M. Booth, "Genetic algorithms for automatic algorithm and parameter selection in ATR applications," Proc. SPIE 3371, Automatic Target Recognition VIII, (18 September 1998); https://doi.org/10.1117/12.323831