You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 November 1998Private-key cryptosystem for CD and DVD
Symmetric code cryptosystems are particularly suitable when large data sets have to be transmitted or stored at high rate. The existing algebraic code based cryptosystems are time consuming and the encoding/decoding speed depends on the key length. They were mainly designed for communications and magnetic media, which have an expected lifetime of up to only a few years. As for transmission there is virtually no lifetime of the transferred information, since the data vanished by itself. The data that is stored on CD or DVD can not be changed, and must remain secure for the lifetime of the sensitive/classified information or the media, which might extend to 100 years or more. This paper proposes a private key cryptosystem based on algebraic coding theory, uses a simple code such as Reed-Solomon code. This new approach is ideal for use in optical media applications. It incorporates with the CD and DVD encoding system, and increases the power of the error correction as a by-product. The system appears to be secure and very efficient because of the low overhead for encryption and decryption.
The alert did not successfully save. Please try again later.
Rizgar N. Jiawook, "Private-key cryptosystem for CD and DVD," Proc. SPIE 3456, Mathematics of Data/Image Coding, Compression, and Encryption, (6 November 1998); https://doi.org/10.1117/12.330371