You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 September 1998Bayesian image reconstruction with a hyperellipsoidal posterior in x-ray fiber diffraction
The structure completion problem in x-ray fiber diffraction is addressed from a Bayesian perspective. The experimental data are sums of the squares of the amplitudes of particular sets of Fourier coefficients of the electron density. In addition, a part of the electron density. In addition, a part of the electron density is known. The image reconstruction problem is to estimate the missing part of the electron density. A Bayesian approach is taken in which the prior model for the image is based on the fact that it consists of atoms, i.e., the unknown electron density consists of separated sharp peaks. The posterior for the Fourier coefficients typically takes the form of an independent and identically distributed multivariate normal density restricted to the surface of a hypersphere. However, the electron density often exhibits symmetry, in which case, the Fourier coefficient components are not longer independent or identically distributed. A diagonalization process results in an independent multivariate normal probability density function, restricted to a hyperspherical surface. the analytical form for the mean of the posterior density function is derived. The mean can be expressed as a weighting function on the Fourier coefficients of the known part of the electron density. The weighting function for the hyperellipsoidal and hyperspherical cases are compared.
The alert did not successfully save. Please try again later.
Shyamsunder Baskaran, Rick P. Millane, "Bayesian image reconstruction with a hyperellipsoidal posterior in x-ray fiber diffraction," Proc. SPIE 3459, Bayesian Inference for Inverse Problems, (22 September 1998); https://doi.org/10.1117/12.323817