You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 December 1998Effect of spatial resolution on thermal IR sensing of plant canopies
Satellite observations of agricultural and other plant canopies in the thermal IR regime have generally been at spatial scales of tens to hundreds of meters. Use of the thermal IR at higher resolutions is confounded by the mixture problem and other associated scaling issues. Advances in sensor technology will extend our capabilities for IR measurements to shorter wavelengths and yield improved spatial resolutions. However, experience with aircraft remote sensing observations has indicated that care must be exercised in understanding the interaction effects of viewing geometry at these higher resolutions. The utilization and scaling of observables with multi-resolution remote sensing data sets remain a difficult problem. At high spatial resolution the three-dimensional character of scene components contained within a pixel must be considered. In this paper, we explore the variability in brightness temperature and the co-variation of NDVI with brightness temperature as a function of viewing geometry and changing spatial resolution. Using three- dimensional models for both canopy reflectance and thermal IR exitance, we employ a theoretical analysis for an agricultural scene where previous comparisons and measurements were available.
The alert did not successfully save. Please try again later.
James Alan Smith, Jerrell R. Ballard Jr., Lee K. Balick, James R. Getter, "Effect of spatial resolution on thermal IR sensing of plant canopies," Proc. SPIE 3499, Remote Sensing for Agriculture, Ecosystems, and Hydrology, (11 December 1998); https://doi.org/10.1117/12.332747