You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
31 August 1998Transport limitations in electrodeposition for LIGA microdevice fabrication
To better understand and to help optimize the electroforming portion of the LIGA process, we have developed one and two- dimensional numerical models describing electrodeposition of metal into high aspect-ratio molds. The one-dimensional model addresses dissociation, diffusion, electromigration, and deposition of multiple ion species. The two-dimensional model is limited to a single species, but includes transport induced by forced flow of electrolyte outside the mold and by buoyancy associated with metal ion depletion within the mold. To guide model development and to validate these models, we have also conducted a series of laboratory experiments using a sulfamate bath to deposit nickel in cylindrical molds having aspect ratios up to twenty-five. The experimental results indicate that current densities well in excess of diffusion-limited currents may still yield acceptable morphologies in the deposited metal. However, the numerical models demonstrate that such large ion fluxes cannot be sustained by convection within the mold resulting from flow across the mold top. Instead, calculations suggest that the observed hundred-fold enhancement of transport probably results from natural convection within the molds and that buoyancy-driven flows may be critical to metal ion transport even in micron-scale features having very large aspect ratios. Taking advantage of this enhanced ion transport may allow order-of-magnitude reductions in electroforming times for LIGA microdevice fabrication.
The alert did not successfully save. Please try again later.
Stewart K. Griffiths, Robert H. Nilson, R. W. Bradshaw, Aili Ting, William D. Bonivert, John T. Hachman, Jill M. Hruby, "Transport limitations in electrodeposition for LIGA microdevice fabrication," Proc. SPIE 3511, Micromachining and Microfabrication Process Technology IV, (31 August 1998); https://doi.org/10.1117/12.324324