You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 December 1998Fourier properties of fingerprints
We investigate the recognition of fingerprints from the Fourier spectrum. The inherent properties of fingerprints allow a feature extraction and data reduction in the spatial frequency domain. The Fourier representation allows fingerprints to be distinguished from a small and spatially well-defined area. This suggests various schemes to detect the significant information in order to optimize the trade-off between sensitivity and robustness. We show illustrative results which confirm the usefulness of this approach. In addition, the classification of fingerprints from their plane wave spectra allows the design of compact systems, where the Fourier transformation is performed optically, while detection and post-processing is done by electronics. This provides the advantage that both optics and electronics are used in an optimum way to minimize the physical size of the system, as well as the computational load to interpret the detected signal.
The alert did not successfully save. Please try again later.
Jin Li, Markus E. Testorf, Michael A. Fiddy, "Fourier properties of fingerprints," Proc. SPIE 3575, Enforcement and Security Technologies, (28 December 1998); https://doi.org/10.1117/12.334989