Translator Disclaimer
30 April 1999 Packaging for 3D optoelectronic stacked processors
Author Affiliations +
The performance requirements of computer, telecommunication, and data-communication systems have increased considerably in recent years to a point where large-scale electronic systems nov suffer from an interconnection bottleneck Large computational systems, with tens, hundreds, or more nodes: are composed of many chip-to-chip and/or module-tomodule interconnections. These complex interconnection systems must be efficient and fast for good overall system performance. Free-space optical interconnects (FSOI) when combined with electronics offer a potential solution to relieve this communication bottleneck 4.5,6,7.8,9,10,11 Indeed, FSOI offer advantages in terms of large interconnection density, high distance-bandwidth product, low power dissipation, and superior crosstalk performance, especially at high data rates. 2,13.14,15,16 However, packaging of FSOI has become one of the major issues, in which alignment is the key factor determining the feasibility and performance of the whole system 17,18.19.20 Critical advances are required to assemble optoelectronic and optical components in a rugged yet simple system fully compatible with conventional electronic packages. In the following sections, we present how a conventional PCB board is populated with optoelectronic detector and laser chips and mated to an FSOI layer that is assembled separately. This is achieved using only commercially available devices and services and enabled b means of simple passive alignment techniques. Design considerations, system simulations, as well as experimental results are presented.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Philippe J. Marchand, Xuezhe Zheng, Dawei Huang, Volkan H. Ozguz, and Sadik C. Esener "Packaging for 3D optoelectronic stacked processors", Proc. SPIE 3631, Optoelectronic Integrated Circuits and Packaging III, (30 April 1999);

Back to Top