Ultrasound is an attractive modality for adjunctive characterization of certain breast lesions, but it is not considered specific for cancer and it is not recommended for screening. An imaging technique remarkably different from pulse-echo ultrasound, termed Optical SonographyTM (Advanced Diagnostics, Inc.), uses the through-transmission signal. The method was applied to breast examinations in 41 asymptomatic and symptomatic women ranging in age from 18 to 83 years to evaluate this imaging modality for detection and characterization of breast disease and normal tissue. This approach uses coherent sound and coherent light to produce real-time, large field-of-view images with pronounced edge definition in soft tissues of the body. The system patient interface was modified to improve coupling to the breast and bring the chest wall to within 3 cm of the sound beam. System resolution (full width half maximum of the line-spread function) was 0.5 mm for a swept-frequency beam centered at 2.7 MHz. Resolution degrades slightly in the periphery of the very large 15.2-cm field of view. Dynamic range of the reconstructed 'raw' images (no post processing) was 3000:1. Included in the study population were women with dense parenchyma, palpable ductal carcinoma in situ with negative mammography, superficial and deep fibroadenomas, and calcifications. Successful breast imaging was performed in 40 of 41 women. These images were then compared with images generated using conventional X-ray mammography and pulse-echo ultrasound. Margins of lesions and internal textures were particularly well defined and provided substantial contrast to fatty and dense parenchyma. In two malignant lesions, Optical SonographyTM appeared to approximate more closely tumor extent compared to mammography than pulse-echo sonography. These preliminary studies indicate the method has unique potential for detecting, differentiating, and guiding the biopsy of breast lesions using real-time acoustical holography.
|