You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 June 1999Damped joints for thin-plate structures
The use of damping materials for joints in thin plate structures is seen as a cheaper and lighter alternative to surface coating technologies. This paper assesses the ability of such joints to damp thin plates over a wide frequency range. Finite element models of several joints are validated experimentally both for static strength and stiffness and for frequency response behavior. The static strength and stiffness of such joints are found to be significantly weaker than jointless plate only under extensional loads. The damping achieved by using these joints is found to depend on the joint flexibility. Typical joints involving less than 1/30th of the size of the structure were found to yield average loss factors of around 2% over a wide frequency range. The addition of simple fasteners such bolts was found to be a practical way of improving the static performance without dramatically reducing the damping.
The alert did not successfully save. Please try again later.
Jem A. Rongong, Geoffrey R. Tomlinson, "Damped joints for thin-plate structures," Proc. SPIE 3672, Smart Structures and Materials 1999: Passive Damping and Isolation, (2 June 1999); https://doi.org/10.1117/12.349793