You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 June 1999Measurement and analysis of particle impact damping
Particle Impact Damping (PID) is a means for achieving high structural damping by the use of a particle-filled enclosure attached to the structure in a region of high displacements. The particles absorb kinetic energy of the structure and convert it into heat through inelastic collisions between the particles and the enclosure, and amongst the particles. PID is measured for a cantilevered aluminum beam with the damping enclosure attached to its free end; lead particles are used in this study. The effect of acceleration amplitude and clearance inside the enclosure on PID is studied. PID is found to be highly nonlinear. The maximum Specific Damping Capacity (SDC) is about 50%, which is more than one order of magnitude higher than the intrinsic material damping of a majority of structural metals [O(1%)]. Driven by the experimental observations, an elementary analytical model of PID is constructed. A satisfactory comparison between the theory and the experiment is observed. An encouraging result is that in spite of its simplicity, the model captures the essential physics of particle impact damping.
The alert did not successfully save. Please try again later.
R. Danner Friend, Vikram K. Kinra, "Measurement and analysis of particle impact damping," Proc. SPIE 3672, Smart Structures and Materials 1999: Passive Damping and Isolation, (2 June 1999); https://doi.org/10.1117/12.349790