You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 June 1999Whole-spacecraft vibration isolation system for the GFO/Taurus mission
A whole-spacecraft isolation system for the GFO/Taurus mission was designed, fabricated, tested, and subsequently flown on February 10, 1998. This isolation system was designed to reduce dynamic responses on the GFO spacecraft caused by the resonant burn dynamic load introduced by the Castor 120 solid rocket motor. Longitudinal (flight direction) response of the GFO spacecraft center of gravity, due to the resonant burn load, was reduced by a factor of seven. The isolation system design was very nonintrusive to existing hardware, lightweight, and effective. Flight data indicates that the isolation system performed as designed. The GFO spacecraft had a successful launch and is currently operational on-orbit. A second flight of this type of isolation system occurred in October 1998. Similar isolation systems are planned for other flights in 1999 and 2000. This whole-spacecraft isolation technology was highly successful for the GFO/Taurus mission.
The alert did not successfully save. Please try again later.
Conor D. Johnson, Paul S. Wilke, Patrick J. Grosserode, "Whole-spacecraft vibration isolation system for the GFO/Taurus mission," Proc. SPIE 3672, Smart Structures and Materials 1999: Passive Damping and Isolation, (2 June 1999); https://doi.org/10.1117/12.349780