Paper
9 July 1999 Linear traveling wave motor
Christoph Hyder, Garnett C. Horner, William W. Clark
Author Affiliations +
Abstract
The objective of this research is to design and develop a working prototype of a linear traveling wave motor that utilizes Thin-layer composite-Unimorph piezoelectric Driver (THUNDER) technology. THUNDER technology is used to create curved actuators from piezoceramic wafers. These flexures are arranged alternatively bowed towards and away from a flat surface. The basis of motion rest on the fact that upon actuation the flexures will change both chord length and radius of curvature. This allows the flexures to either grip the driving rod or extend axially. Motion is achieved through sequential operation of individual flexures. This method yields a lightweight actuator with power off holding capability and a larger step size than motors that use stacked actuators. The simple design lends itself to inexpensive fabrication. A finite element model was used to predict the initial curvature and the height displacement of a single flexure. The model takes into account material properties, physical layout, fabrication techniques and driving voltage. These theoretical predictions were compared to experimental results. A prototype was developed but no movement has been realized in this configuration. However, it is shown that the flexures have the capability to achieve step sizes 1-2 orders of magnitude greater than other similar linear actuators.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Christoph Hyder, Garnett C. Horner, and William W. Clark "Linear traveling wave motor", Proc. SPIE 3674, Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies, (9 July 1999); https://doi.org/10.1117/12.351557
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Semiconducting wafers

Ferroelectric materials

Manufacturing

Prototyping

Ultrasonics

Finite element methods

Back to Top