Paper
2 August 1999 Landmine detection using feedback NQR
Andrew J. Blauch, Jeffrey L. Schiano, Mark D. Ginsberg
Author Affiliations +
Abstract
Nuclear quadrupole resonance (NQR) is well suited for detecting land mines with non-metallic cases. It provides both spatial localization and chemical identification of explosives. A search coil produces a train of radio frequency (RF) magnetic pulses that perturb the orientation of nitrogen nuclei contained within the explosive material. Following each RF pulse, the nuclei rotate back to orientations of lower energy. As the nitrogen nuclei possess a magnetic moment, their motion following an RF pulse induces a detectable voltage in the search coil. The NQR signal strength depends on the amplitude, frequency, duration and repetition rate of the applied RF pulses. The optimal selection of RF parameters requires knowledge that is not available in practice, such as the location of the explosive with respect to the search coil. Existing NQR detection systems sacrifice signal intensity by using field pulse parameters. We demonstrate that feedback control provides a means for automatically adjusting multiple pulse parameters so that the maximum NQR signal strength is obtained. The advantages afforded to landmine detection using feedback NQR are summarized.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Andrew J. Blauch, Jeffrey L. Schiano, and Mark D. Ginsberg "Landmine detection using feedback NQR", Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, (2 August 1999); https://doi.org/10.1117/12.357070
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Signal to noise ratio

Land mines

Explosives

Signal detection

Data acquisition

Magnetism

Receivers

Back to Top