You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 August 1999Mine detection in sonar images with minimal user input
A parameter-free and a priori-information-free preprocessing of sonar images is proposed, which permits a ranking of local extrema in the image according to their likelihood to be amine-like objects. It is shown that an acceptable fully automatic detection algorithm can be built on a variational method which estimates shape information of the possible mines. This algorithm does not use any a priori information on the type of mine or range distance or background type and works without any change on both sonar databases we had available. It therefore can be used as a detection algorithm without any information request the use or designer. Its results could be fed into a classification algorithm like the one proposed. We also think that the features computed by this variational method could serve for both the detection step and the classification step, thus reducing the number of designer's parameters and opening the way to a parameter-free detection-classification algorithm.
The alert did not successfully save. Please try again later.
Jose Luis Lisani, Jean-Michel Morel, Lenny I. Rudin, "Mine detection in sonar images with minimal user input," Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, (2 August 1999); https://doi.org/10.1117/12.357081