You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 August 1999Sensor fusion for antipersonnel landmine detection: a case study
In this paper the multi sensor fusion results obtained within the European research project GEODE are presented. The layout of the test lane and the individual sensors used are described. The implementation of the SCOOP algorithm improves the ROC curves, as the false alarm surface and the number of false alarms both are taken into account. The confidence grids, as produced by the sensor manufacturers, of the sensors are used as input for the different sensor fusion methods implemented. The multisensor fusion methods implemented are Bayes, Dempster-Shafer, fuzzy probabilities and rules. The mapping of the confidence grids to the input parameters for fusion methods is an important step. Due to limited amount of the available data the entire test lane is used for training and evaluation. All four sensor fusion methods provide better detection results than the individual sensors.
The alert did not successfully save. Please try again later.
Eric den Breejen, Klamer Schutte, Frank Cremer, "Sensor fusion for antipersonnel landmine detection: a case study," Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, (2 August 1999); https://doi.org/10.1117/12.357003