Translator Disclaimer
Paper
5 March 1999 Attenuation and scattering of short-duration laser pulses in a strongly scattering medium
Author Affiliations +
Proceedings Volume 3735, ICONO '98: Ultrafast Phenomena and Interaction of Superstrong Laser Fields with Matter: Nonlinear Optics and High-Field Physics; (1999) https://doi.org/10.1117/12.341485
Event: ICONO '98: Laser Spectroscopy and Optical Diagnostics: Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, 1998, Moscow, Russian Federation
Abstract
The dependence of the optical density of a model strongly scattering medium-aqueous milk solution on its layer thickness was investigated. IR lasers generating pulses of various short (from nanosecond to femtosecond) duration were used as the radiation sources. There were determined the dependences of the attenuation coefficients of such pulses on the solution concentration in the areas of low and more high optical densities of the solution layer for different values of radiation detector angular aperture. A modification of the two-flux Kubelka-Munk model was used to derive an expression describing the dependence of the transmission of a solution layer on its parameters when radiation detectors with a finite angular aperture are used. The absorption and scattering coefficients of the medium were obtained. A comparison of the calculations and experiments revealed a forward scattering anisotropy of short-duration laser radiation in an aqueous milk solution characteristic for the Mie's scattering.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vitaly M. Podgaetsky, Sergei A. Tereshchenko, Sergey V. Selishchev, Alexander V. Smirnov, and Nikolai S. Vorobiev "Attenuation and scattering of short-duration laser pulses in a strongly scattering medium", Proc. SPIE 3735, ICONO '98: Ultrafast Phenomena and Interaction of Superstrong Laser Fields with Matter: Nonlinear Optics and High-Field Physics, (5 March 1999); https://doi.org/10.1117/12.341485
PROCEEDINGS
10 PAGES


SHARE
Advertisement
Advertisement
Back to Top