Translator Disclaimer
14 October 1999 Photorefractivity in liquid crystals doped with a soluble conjugated polymer
Author Affiliations +
Photoconductive polymers are doped into liquid crystals to create a new mechanism for space-charge field formation in photorefractive liquid crystal composites. The composites contain poly(2,5-bis(2'-ethylhexyloxy)-1,4- phenylenevinylene) (BEH-PPV) and the electron acceptor N,N'- dioctyl-1,4:5,8-naphthalenediimide, NI. Using asymmetric energy transfer (beam coupling) measurements that are diagnostic for the photorefractive effect, the direction of beam coupling as a function of grating fringe spacing inverts at a spacing of 5.5 micrometers . We show that the inversion is due to a change in the dominant mechanism for space-charge field formation. At small fringe spacings, the space-charge field is formed by ion diffusion in which the photogenerated anion is the more mobile species. At larger fringe spacings, the polarity of the space charge field inverts due to dominance of a charge transport mechanism in which photogenerated holes are the most mobile spaces due to hole migration along the BEH-PPV chains coupled with interchain hole hopping. Control experiments are presented, which use composites that can access only one of the two charge transport mechanisms. The results show that charge migration over long distances leading to enhanced photorefractive effects can be obtained using conjugated polymers dissolved in liquid crystals.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gary P. Wiederrecht, Walter A. Svec, Mark P. Niemczyk, and Michael R. Wasielewski "Photorefractivity in liquid crystals doped with a soluble conjugated polymer", Proc. SPIE 3800, Liquid Crystals III, (14 October 1999);

Back to Top