You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 October 1999Hydrophilic and hydrophobic phenomena on silicon substrate for MEMS
In this study, we found electrochemical wetting on a surface of a silicon substrate by direct voltage. The surfaces of silicon substrates do not have good wettability in usual condition. We observed here that a wetting area between a silicon substrate and a ultrapure water drop on the silicon surface expanded and a contact angel became almost zero degrees when direct voltage was impressed. Voltages inducing wetting are various and are dependent on crystal directions of substrate surfaces, voltage directions, and so on. However, this phenomenon is irreversible for ultrapure water. Next, experiments using some solutions containing several kinds of ions instead of ultrapure water were conducted. In general, drops of the solutions spread by lower voltage than drops of ultrapure water. When a cathode is contacted to a substrate an anode is immersed in a drop of sodium sulfate solution, the spread of the drop occurs. Then, shrinkage is observed when the reverse voltage is applied. Surface tension is a dominant and important force to micro size structures. At last, we show some types of micro actuator using surface tension controlled electrically in order to apply these phenomena to MEMS.
Daiki Kamiya andMikio Horie
"Hydrophilic and hydrophobic phenomena on silicon substrate for MEMS", Proc. SPIE 3893, Design, Characterization, and Packaging for MEMS and Microelectronics, (8 October 1999); https://doi.org/10.1117/12.368454
The alert did not successfully save. Please try again later.
Daiki Kamiya, Mikio Horie, "Hydrophilic and hydrophobic phenomena on silicon substrate for MEMS," Proc. SPIE 3893, Design, Characterization, and Packaging for MEMS and Microelectronics, (8 October 1999); https://doi.org/10.1117/12.368454