Paper
17 May 2000 Use of high-intensity focused ultrasound in the treatment of both benign and malignant prostatic disease
Kenneth M. Kernen, Brian J. Miles M.D.
Author Affiliations +
Abstract
Prostate cancer, the most common malignancy in men in the United States, accounts for more than 29% of all male cancers diagnosed and 13% of all cancer deaths. This translates into approximately 200,000 men diagnosed and 37,000 men who will die from the disease this year in this country. A significant number of patients ultimately choose external beam radiation or interstitial radioactive implants (brachytherapy) combined with external beam radiotherapy as their primary treatment. Approximately 25 - 35% of external beam irradiation patients and 20 - 30% of interstitial implants combined with external beam radiotherapy will fail within 10 years. The treatment options for patients with localized radiorecurrent disease include watchful waiting, endocrine therapy, salvage radiotherapy, and salvage radical prostatectomy, cryotherapy and now high intensity focused ultrasound therapy (HIFU). Although some studies regarding watchful waiting demonstrated comparable results to formal treatment for early prostate cancer, other studies have shown metastatic and mortality rates that are significantly higher, and that radiorecurrent patients would have even greater rates of metastasis and progression to death. Prostate cancer cure by means of endocrine therapy is highly unlikely and its role is still one of palliation with a side effect profile which includes hot flashes, osteoporosis, fatigue, loss of muscle mass, anemia, loss of libido and potency. The role of salvage radiotherapy may offer local control, however long term efficacy has yet to be determined. In a recent series, only 50% of the patients were controlled for a mean of four years with salvage radiotherapy. Salvage prostatectomy has the advantage of providing excellent local control and even a cure if the cancer is confined to the prostate or within the surrounding periprostatic tissue. Historically, salvage prostatectomy is technically demanding and fraught with higher complications. In one large series, investigators found rectal injuries in up to 15%, anastomotic strictures in 27% and urinary incontinence in approximately 58%, as well as an overall higher estimated blood loss, transfusions, and hospital stay greater than that of a standard radical retropubic prostatectomy. Cryotherapy also has a significant complication rate with incontinence (73%), impotence (72%), and prolonged dysuria in 67%. In this report, biopsies were negative in 77% but biochemical failure occurred in 58% of patients. High intensity focused ultrasound (HIFU) therapy is a relatively new treatment modality and is being applied transrectally for the treatment of both benign prostatic hyperplasia and adenocarcinoma of the prostate. The therapy is also under evaluation at multiple centers in the United States for the treatment of radiorecurrent prostate cancer. In Europe, it not only being evaluated as treatment for radiorecurrent prostate cancer, but is also being evaluated and offered as a minimally invasive primary therapy for prostate cancers localized to the gland. The technique of HIFU generation has been previously described in detail. The ablation device is comprised of a patient treatment table, main computer, an oscillator, power amplifier, power measurement system, probe movement system, endorectal probe with built-in ultrasound scanner and treatment transducer, and reprography equipment. The patient is administered either a spinal or general anesthesia, positioned on the treatment table on his side with the legs flexed, the endorectal probe is then inserted. The ultrasound imaging is used to detect the contours of the prostate and the target volume to be treated is then calculated. Under computer control, the HIFU device position and then successively repositions the endorectal probe, delivering the high intensity focused ultrasound according to the treatment blocks defined by the surgeon. This sequence then repeats until all sectors of the prostate have been treated. HIFU is generated by high power acoustic transducers, which produce focused ultrasound waves, that generate high temperatures to achieve coagulative necrosis of the target tissue. The ultrasound waves are emitted in discrete, timed bursts with a duration of several seconds. At the focal point of the ultrasound, the temperatures achieved are approximately 85 degrees Celsius, thereby ablating the prostate tissue. An attractive advantage of HIFU is its low risk of morbidity, due to the sudden, short bursts of the intensely focused ultrasound, which, along with the heat generated, are quickly absorbed by the target tissue, thereby protecting the surrounding tissues from damage.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kenneth M. Kernen and Brian J. Miles M.D. "Use of high-intensity focused ultrasound in the treatment of both benign and malignant prostatic disease", Proc. SPIE 3907, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X, (17 May 2000); https://doi.org/10.1117/12.386294
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Ultrasonography

Prostate

Tissues

Prostate cancer

Transducers

Cancer

Radiotherapy

Back to Top