You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 March 2000Membrane primary mirror for a telescope with a real-time holography corrector
During some last years an interest has grown in usage of membrane elastic primary mirrors in both beam-projecting and imaging telescopes comprising a nonlinear-optical correction system. Theoretical and experimental studies of these mirrors based on a plane membrane uniform in thickness, at pressure applied along the normal to its surface and tension applied at its edges, have shown that aberrations of such a mirror (with aperture approximately 3 m and relative aperture approximately 1:2) are in the visible wavelength range too large to be compensated with the use of the existent correction systems. In this paper it is proposed for improvement of optical quality of the mirror surface to employ either a plane- membrane mirror variable in thickness or a mirror based on an initial-surface-profile membrane. The presented numerical results of calculation of both the mirror shape and the range of aberration parameters for these mirrors show that aberrations available prove to be lower in magnitude than those of the required level.
The alert did not successfully save. Please try again later.
Sergei A. Dimakov, Boris V. Kislitsyn, "Membrane primary mirror for a telescope with a real-time holography corrector," Proc. SPIE 3951, Diffractive/Holographic Technologies and Spatial Light Modulators VII, (10 March 2000); https://doi.org/10.1117/12.379363