You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 June 2000Automatic screening of polycystic kidney disease in x-ray CT images of laboratory mice
This paper describes the application of a statistical-based deformable model algorithm to the segmentation of kidneys in x-ray computed tomography (CT) images of laboratory mice. This segmentation algorithm has been developed as the crucial first step in a process to automatically screen mice for genetically-induced polycystic kidney disease (PKD). The algorithm is based on active shape models (ASMs) initially developed by Cootes, et al. Once the segmentation is complete, texture measurements are applied within kidney boundaries to detect the presence of PKD. The challenges associated with the segmentation of mouse kidneys (non-rigid organs) are presented, and the motivation for using ASMs in this application is discussed. Also, improvements were made to published ASM methods that may be generally helpful in other segmentation applications. In 15 of the 18 cases tested, the mouse kidneys and spine were detected with only minor errors in boundary position. In the remaining three cases, small parts of the kidneys were missed and/or some extra abdominal tissue was inadvertently included by the boundary. In all 18 cases, however, the kidneys were successfully detected at a level where PKD could be automatically screened for using mean-of-local-variance (MOLV) texture measurements.
The alert did not successfully save. Please try again later.
Shaun S. Gleason, Hamed Sari-Sarraf, Michael J. Paulus, Dabney K. Johnson, Mongi A. Abidi, "Automatic screening of polycystic kidney disease in x-ray CT images of laboratory mice," Proc. SPIE 3979, Medical Imaging 2000: Image Processing, (6 June 2000); https://doi.org/10.1117/12.387747