You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 June 2000Fabrication of electroactive polymer actuator composed of polypyrrole and solid-polymer electrolyte and its application to micropump
Mechanical performances of beam-shaped and bridge-shaped conductive polymer actuator in aqueous solution and in solid electrolyte have been measured and analyzed varying polymerization conditions and operating conditions. The optimum thickness of polypyrrole for the best bending performance is about 17-19 μm which has been polymerized at the current density of 5.4 μA/mm2 for 120 minutes. For the application of conductive polymer actuator to micropump, silicon bulk micromachining process has been combined with polymer processes. By use of parylene diaphragm and anisotropic etching of silicon, the micropump structure composed of polypyrrole and solid polymer electrolyte has been fabricated successfully.
The alert did not successfully save. Please try again later.
Seung-Ki Lee, Young Choi, WooYoung Sim, Sang Sik Yang, HoJung An, James Jungho Pak, "Fabrication of electroactive polymer actuator composed of polypyrrole and solid-polymer electrolyte and its application to micropump," Proc. SPIE 3987, Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD), (7 June 2000); https://doi.org/10.1117/12.387787