You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 April 2000Optimal design of a piezoelectric passive damper for vibrating plates
In this paper, an efficient piezoelectric passive damper is newly devised to suppress the multi-mode vibration of plates. To construct the passive damper, the piezoelectric materials are utilized as energy transformer, which can transform the mechanical energy to electrical energy. To dissipate the electrical energy transformed from mechanical energy, multiple resonant shunted piezoelectric circuits are applied. The dynamic governing equations of a coupled electro-mechanical piezoelectric with multiple piezoelectric patches and multiple resonant shunted circuits is derived and solved for the one edge clamped plate. The equations of motion of the piezoelectrics and shunted circuits as well as the plate are discretized by finite element method to estimate more exactly the effectiveness of the piezoelectric passive damper. The method to find the optimal location of a piezoelectric is presented to maximize effectiveness for desired modes. The electro-mechanical coupling term becomes important parameter to select the optimal location.
The alert did not successfully save. Please try again later.
Seung Jo Kim, Chul Yong Yun, Byung Joo Paek, "Optimal design of a piezoelectric passive damper for vibrating plates," Proc. SPIE 3989, Smart Structures and Materials 2000: Damping and Isolation, (27 April 2000); https://doi.org/10.1117/12.384590