Paper
12 June 2000 Feasibility of using piezoelectric actuators to control launch vehicle acoustics and structural vibrations
Author Affiliations +
Abstract
Future launch vehicle payload fairings will be manufactured form advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. To help determine the acoustic control authority of piezoelectric actuators mounted on a rocket fairing, the internal acoustic response created by the actuators needs to be determined. In this work, the internal acoustic response of a closed simply-supported (SS) cylinder actuated by piezoelectric (PZT) actuators is determined using a n impedance model for the actuator and boundary element analysis. The experimentally validated model is used to extrapolate results for a SS cylinder that emulates a Minotaur payload fairing. The internal cylinder acoustic levels are investigated for PZT actuation between 35 and 400 Hz. Significant reductions in the structural response due to increased damping do not equate to similar reductions in the acoustic SPLs for the cylinder. The sound levels at the acoustic resonant frequencies are essentially unaffected by the significant increase in structural damping while the acoustic level sat the structural resonant frequencies are mildly reduced. The interior acoustic response of the cylinder is dominated by the acoustic modes and therefore significant reductions in the overall interior acoustic levels will not be achieved if only the structural resonances are controlled. As the actuation frequency is reduced, the number of actuators required to generate acoustic levels commensurate to that found in the fairing increases to impractical values. Below approximately 100 Hz, the current demands reach levels that are extremely difficult to achieve with a practical system. The results of this work imply that PZT actuators do not have the authority to control the payload fairing internal acoustics below approximately 100 Hz.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Christopher Niezrecki and Harley H. Cudney "Feasibility of using piezoelectric actuators to control launch vehicle acoustics and structural vibrations", Proc. SPIE 3991, Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies, (12 June 2000); https://doi.org/10.1117/12.388156
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Acoustics

Actuators

Ferroelectric materials

Scanning probe lithography

Composites

Amplifiers

Information operations

Back to Top