You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 June 2000Comparison of actuator properties for piezoelectric and electrostrictive materials
The field induced strain has been measured for a broad variety of piezoelectric and electrostrictive actuator materials. These measurements have been made under AC drive conditions with variations in DC bias, peak to peak voltage, and prestress. Data for three types of PMN-PT electrostrictors, hard and soft piezoelectric ceramics, and PZN-PT single crystal have been collected. For smart structures applications fine grain Type II ceramic and PZN- PT single crystals were found to have the best combination of moderate to high strain, low to moderate hysteresis, and resistance to stress depoling. Electrostrictive ceramics used for high frequency transducers were found to exhibit some stress induced domain reorientation effects that depended on drive conditions and operating temperature. These effects became more pronounced for electrostrictors with high lead titanate content. Epoxy bonded stacks have been constructed form some of the materials to determine the merits of materials properties for actuator performance. This work has shown that fine grain Type II ceramics have many advantages for high authority stack actuators including high strain energy density and lifetimes > 109 cycles at 100 percent rated peak-to-peak voltage.
The alert did not successfully save. Please try again later.
Ming-Jen Pan, Paul W. Rehrig, John Paul Kucera, Seung Eek Eagle Park, Wesley S. Hackenberger, "Comparison of actuator properties for piezoelectric and electrostrictive materials," Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000); https://doi.org/10.1117/12.388248