You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 June 2000Scatterometry for the measurement of metal features
Scatterometry, an optical metrology based on the principle of diffraction, has received a considerable amount of attention in the literature in the past decade. By measuring and analyzing the light scattered, or diffracted, from a patterned periodic sample, the dimensions of the sample itself can be measured. Applications of the technique have included the characterization of photomasks, the monitoring of focus, dose and the post exposure bake process, and even the characterization of three-dimensional features such as contact hole and DRAM arrays. Like other optical metrologies, scatterometry measurements are rapid, non-destructive and highly repeatable. The most widely reported scatterometry data have been for measurements of developed photoresist and etched poly-Si gratings. Although these types of features represent a considerable portion of a typical process, other types of materials, such as metal layers, are also commonly present, and are important to characterize. In this work scatterometry measurement data from metal layers will be presented. The scatterometer used in this investigation was the well-known 2- (Theta) variety, where the scatter signature is obtained by measuring the diffraction efficiency of a particular order as the incident angle is varied. The analysis involved comparing the measured data to a library of theoretical scatter signatures (generated a priori from rigorous coupled wave theory) to find the best match. The measurements were performed at two process steps: pre-etch, where the patterned features were resist gratings on uniform metal layers, and post-etch/strip, where the patterned features were etched metal gratings. The composition of the metal stack starts with a silicon substrate, upon which is deposited 3000 A of oxide, followed by 500 A of Ti, 6000 A of AlCu and 250 A of TiN. A BARC layer and then the photoresist were deposited on this stack for patterning. The nominal patterned dimensions were 350 nm lines in 800 nm pitch gratings. Overall the sample set for this study included some 24 wafers with various AlCu layer thicknesses, providing a broad wafer split for analysis. Measurement results for linewidth and the various layer thicknesses will be presented, and comparisons to AFM measurements will be made. Results from assessing the repeatability of the 2-(Theta) scatterometer will also be presented, and indicate sub-nanometer precision (6-(sigma) ) for linewidth measurements. In addition, the practical aspects of the method, such as the modeling time required to generate the signature library as well as measurement speed and throughput will be presented.
The alert did not successfully save. Please try again later.
Christopher J. Raymond, Stephen W. Farrer, Scott Sucher, "Scatterometry for the measurement of metal features," Proc. SPIE 3998, Metrology, Inspection, and Process Control for Microlithography XIV, (2 June 2000); https://doi.org/10.1117/12.386466