You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 July 2000Hyperboloid-hyperboloid grazing incidence x-ray telescope designs for wide-field imaging applications
The classical Wolter Type 1 X-ray telescope consists of two grazing incidence mirrors, a confocal paraboloid and hyperboloid. This design exhibits perfect geometric imaging on-axis (i.e., no spherical aberration) but suffers from severe field curvature, coma, astigmatism, and higher-order aberrations such as oblique spherical aberration. The Wolter-Schwarzschild design, consisting of two general aspheric grazing incidence surfaces, is corrected for both spherical aberration and coma, thus yielding very good geometrical performance at small field angles that becomes severely degraded at large field angles. The image quality criterion for stellar (small-field) X-ray telescopes is frequently expressed in terms of an on-axis fractional encircled energy, with the off-axis performance being dictated by the field-dependent aberrations characteristic of the design. A more appropriate image quality criterion for wide-angle applications is some area-weighted-average measure of resolution that maximizes the number of spatial resolution elements over a given operational field-of-view (OFOV). In practice, scattering effects from residual optical fabrication errors and detector effects (finite pixel size and charge spreading) dominate geometrical aberrations for small field angles whereas the geometrical aberrations dominate the image degradation at large field angles. Under these conditions, there is little merit in a telescope design corrected for coma (or even spherical aberration). Our new image quality criterion has led us to a whole new class of generalized Wolter Type I (hyperboloid- hyperboloid) designs that can be optimized for a given OFOV. A specific design and its predicted systems performance for the Solar X-ray Imager mission are described in detail.
The alert did not successfully save. Please try again later.
James E. Harvey, Patrick L. Thompson, Andrey Krywonos, "Hyperboloid-hyperboloid grazing incidence x-ray telescope designs for wide-field imaging applications," Proc. SPIE 4012, X-Ray Optics, Instruments, and Missions III, (18 July 2000); https://doi.org/10.1117/12.391569