Translator Disclaimer
Paper
3 July 2000 NRO 10-m submillimeter telescope
Author Affiliations +
Abstract
A 10-m submillimeter telescope designed for interferometric observations at bands from 3 to 0.3 mm has constructed at Nobeyama Radio Observatory. The telescope is an engineering model for a large millimeter and sub-millimeter array, and will be operated for developments of sub-millimeter observation techniques at a remote site. We have fabricated lightweight machined aluminum panels (15 kg m-2) that have a surface accuracy of 5 micrometer rms. They have a typical size of 0.8 m X 0.6 m, and are supported with three motorized screws. The back-up structure is constructed of a central hub of low thermal expansion alloy, and CFRP honeycomb boards and tubes. Holography measurements will be made with a nearby transmitter at 3 mm. The overall surface accuracy is expected to be < 25 micrometer rms; the goal being 17 micrometer rms. We have achieved an accuracy of 0.03' rms for angle encoders. The drive and control system is designed to achieve a pointing error of 1'.0 rms with no wind and at night. Under a wind velocity of 7 m s-1, the pointing error increases to 2'.0 rms. An optical telescope of 10-cm diameter mounted on the center hub will be used to characterize pointing and tracking accuracy. Thermal effects on the pointing and surface accuracy will be investigated using temperature measurements and FEM analyses. The fast position switching capability is also demanded to cancel atmospheric fluctuations. The antenna is able to drive both axes at a maximum velocity of 3 deg s-2 with a maximum acceleration of 6 deg. s-2. The telescope is currently equipped with SIS receivers for 100, 150, 230, and 345 GHz and a continuum backend and an FX-type digital autocorrelator with an instantaneous bandwidth of 512 MHz and 1024 channel outputs.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
PROCEEDINGS
8 PAGES


SHARE
Advertisement
Advertisement
Back to Top