You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 August 2000Reformulation of the MODTRAN band model for higher spectral resolution
The MODTRAN 1 cm-1 band model has been reformulated for application to higher spectral resolution. Molecular line center absorption is still determined from finite spectral bin equivalent widths but is now partitioned between the bin containing the molecular transition and its nearest neighbor bin. Also, the equivalent width calculation has been upgraded to retain to maintain high accuracy at the increased spectral resolution. The MODTRAN Lorentz line tail spectral bin absorption coefficient data has been replaced by a more general and accurate Pad? approximant for Voigt line tails, and higher order pressure dependencies are now modeled. Initial comparisons to the FASE model and to measurement data are presented.
The alert did not successfully save. Please try again later.
Alexander Berk, Prabhat K. Acharya, Lawrence S. Bernstein, Gail P. Anderson, James H. Chetwynd Jr., Michael L. Hoke, "Reformulation of the MODTRAN band model for higher spectral resolution," Proc. SPIE 4049, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, (23 August 2000); https://doi.org/10.1117/12.410340