You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 February 2001Oxygen doping in zinc phthalocyanine layers for photovoltaic applications
Gas effusion measurements show that ZnPc layers absorb considerable quantities of oxygen and water if exposed to ambient air. Bulk concentrations of O2 and H2O reach levels of (1.1 +/- 0.3)*1020 and (1.7 +/- 0.4)*1020 molecules per cm3 respectively. O2 is observed to maintain its molecular form when incorporated into the ZnPc matrix. At room temperature (296 K), the oxygen molecules are free to move diffusively in the layer with a diffusion coefficient of (3.0 +/- 0.4)*10-8 cm2/s. Electrical analysis of ZnPc layers in controlled gas atmospheres show that O2 establishes a p-type doping in the bulk. The space charge density increases linearly with the external oxygen pressure. In ambient conditions, the O2 concentration equals (1.6 +/- 0.2)*1016 ions per cm3, which corresponds with a thermal activation energy of (0.23 +/- 0.05) eV for ionizing O2. In contrast to O2, H2O does not affect the space charge density of the depletion layer. The performance of p-n type solar cells incorporating a ZnPc layer was investigated under different oxygen pressures. It was possible to raise the efficiency of the cell when applying higher O2 pressures. The short-circuit current increased by a factor of 1.5 when raising the oxygen pressure threefold from atmosphere pressure under AM1.5 illumination. This can be attributed to a more efficient hole collection through the organic layer resulting from a higher internal electrical field strength. However, the exciton diffusion length was observed to decrease approximately 25% when raising the external oxygen pressure from 0.02 to 0.47 bar. We conclude that the exciton diffusion length in organic solar cells is limited by the ionic impurity density, which on the other hand is required for the effective collection of charge carriers.
The alert did not successfully save. Please try again later.
Harald Robert Kerp, E. E. van Faassen, "Oxygen doping in zinc phthalocyanine layers for photovoltaic applications," Proc. SPIE 4108, Organic Photovoltaics, (5 February 2001); https://doi.org/10.1117/12.416933