Paper
19 October 2000 Femtosecond optics for optical data storage and detection
Author Affiliations +
Abstract
In this paper, we show two optical storage and retrieval techniques: a technique to record/readout data in serial format with real time detection, and an orthogonal-code multiplexed recording/readout system with nonlinear gated detection. Both of these techniques are based on femtosecond optical short pulses. In the former storage and detection technique, a train of pulses is recorded via spectral holography into a photorefractive crystal at wavelength 460 nm and the recorded hologram is read at the wavelength 920 nm, allowing nonvolatile readout of information from the photorefractive crystal. For detection and demultiplexing of a femtosecond pulse sequence whose time duration is much longer than the pulse width, a new pulse correlation technique is developed that is capable of real-time conversion of a femtosecond pulse sequence into its spatial image. Our technique uses a grating at the entrance of the system, thus introducing a transverse time delay (TTD) into the transform-limited reference pulse. The shaped signal pulses and the TTD reference pulse are mixed in a nonlinear optical crystal, producing a second-harmonic field that carries the spatial image of the temporal shaped signal pulse. In the orthogonal-code multiplexed recording technique with spectral holography, a signal pulse that contains a 1-D spatial information is recorded with a unique spectral phase-coded reference pulse, and multiplexing is performed by orthogonal phase-coding of reference pulses. Information readout is performed employing a nonlinear time- grating technique with the use of wave mixing in nonlinear optical crystals. We present the basic principles and experimental results for those femtosecond optics systems.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kazutaka Oba, Pang Chen Sun, Yuri T. Mazurenko, and Yeshaiahu Fainman "Femtosecond optics for optical data storage and detection", Proc. SPIE 4110, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VI, (19 October 2000); https://doi.org/10.1117/12.404787
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Holograms

Holography

Femtosecond phenomena

3D image reconstruction

Crystals

Multiplexing

Ultrafast phenomena

Back to Top