You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 December 2000Uncooled infrared microbolometer arrays for Earth remote sensing
The recent development of high performance uncooled infrared microbolometer arrays with detection limit (Noise Equivalent Temperature Difference) as low as 50 mK (f/1-60 Hz) offers a new challenge for the design of space instruments for Earth remote sensing. In this paper, we present results obtained on a 256x64 amorphous Silicon microbolometers array and on a 320x240 Vanadium Oxide (VOx) microbolometers array, from electro-optical characterizations performed at Centre National d'Etudes Spatiales. The goal of these measurements is to derive the performances of these arrays in order to study the feasibility of Earth remote sensing instruments using uncooled infrared microbolometer arrays. We find that a detection limit of approximately 0.16 K could be achieved at low spatial resolution, where the VOx microbolometer array is more adapted, due to relatively large time constant (approximately 23 ms). At medium spatial resolution, a detection limit of approximately 0.5 K could be achieved, with the amorphous Silicon microbolometer array.