You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 January 2001Removal of atmospheric effects from hyperspectral imaging data for remote sensing of coastal waters
Existing atmospheric correction algorithms for multi-channel remote sensing of ocean color from space were designed for retrieving water leaving radiances in the visible over clear deep ocean areas. The information about atmospheric aerosols is derived from channels between 0.66 and 0.87 micrometer, where the water leaving radiances are close to zero. The derived aerosol information is extrapolated back to the visible when retrieving water leaving radiances from remotely sensed data. For the turbid coastal environment, the water leaving radiances from the 0.66-micrometer channel may not be close to zero because of back scattering by suspended materials in the water. This channel may not be useful for deriving information on atmospheric aerosols. As a result, the algorithms developed for applications to clear ocean waters cannot be easily modified to retrieve water leaving radiances from remotely sensed data measured over the coastal environments. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer (COIS). The algorithm uses lookup tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique utilizing channels located at wavelengths longer than 0.86 micrometer. The aerosol information is extracted back to the visible based on aerosol models during our retrieval of water leaving radiances. Quite reasonable results have been obtained when applying our algorithm to process hyperspectral imaging data acquired with an airborne imaging spectrometer.
The alert did not successfully save. Please try again later.
Bo-Cai Gao, Marcos J. Montes, Curtiss O. Davis, "Removal of atmospheric effects from hyperspectral imaging data for remote sensing of coastal waters," Proc. SPIE 4154, Hyperspectral Remote Sensing of the Ocean, (5 January 2001); https://doi.org/10.1117/12.411682