You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 October 2000Thermal modeling of low-power micromachined solid state integrated gas sensor
Silicon micromachining technology provides a cheap, massproduceable means to manufacture simple, low power consumption integrated metal oxide thin film gas sensors for industrial, environmental and medical purposes. Small size, low power consumption, low noise, low manufacturing cost, fast response time, long term stability under harsh conditions such as high temperature and aggressive gas atmospheres, as well as high selectivity are the basic requirements for the new micromachined gas sensor developed in this paper. The developed semiconductor gas sensor can be fabricated by the techniques that are compatible with IC fabrication. According the results of thermal simulation of the present gas sensor, the thermal isolation structure can work effectively. Uniform temperature distribution can be obtained while heating the suspended membrane. The supporting bridges can resist the heat transfer from membrane to silicon frame effectively. In the meantime, the heating response is very fast, and the power consumption is below 10 mW at the operating temperature of 300 centigrade.
The alert did not successfully save. Please try again later.
Yanju Liu, Hejun Du, Yongqing Fu, "Thermal modeling of low-power micromachined solid state integrated gas sensor," Proc. SPIE 4230, Micromachining and Microfabrication, (20 October 2000); https://doi.org/10.1117/12.404917