You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 April 2001Spin dynamics in nonlinear optical spectroscopy of Fermi sea systems
We discuss the role of many-body spin correlations in nonlinear optical response of a Fermi sea system with a deep impurity level. Due to the Hubbard repulsion between electrons at the impurity, the optical transitions between the impurity level and the Fermi sea states lead to an optically-induced Kondo effect. In particular, the third- order nonlinear optical susceptibility logarithmically diverges at the absorption threshold. The shape of the pump- probe spectrum is governed by the light-induced Kondo temperature, which can be tuned by varying the intensity and frequency of the pump optical field. In the Kondo limit, corresponding to off-resonant pump excitation, the nonlinear absorption spectrum exhibits a narrow peak below the linear absorption onset.
The alert did not successfully save. Please try again later.
Tigran V. Shahbazyan, Ilias E. Perakis, Mikhail E. Raikh, "Spin dynamics in nonlinear optical spectroscopy of Fermi sea systems," Proc. SPIE 4280, Ultrafast Phenomena in Semiconductors V, (23 April 2001); https://doi.org/10.1117/12.424733