You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 May 2001Electroluminescence at Si bandgap energy from metal-oxide-semiconductor tunneling diodes
We report room-temperature electroluminescence at Si bandgap energy from Metal-Oxide-Semiconductor (MOS) tunneling diodes. The ultrathin gate oxide with thickness 1 to approximately 3 nm was grown by rapid thermal oxidation (RTO) to allow significant current to tunnel through. The measured EL efficiency of the MOS tunneling diodes increases with the injection current and could be in the order of 10-5, which exceeds the limitation imposed by indirect bandgap nature of Si. We also study the temperature dependence of the electroluminescence and photoluminescence. The electroluminescence is much less dependent on temperature than photoluminescence from Si. The applied external field that results in the accumulation of majority carriers at Si/SiO2 interface in the case of electroluminescence could be the reason for such difference. The involved physics such as optical phonon, interface roughness, localized carriers, and exciton radiative recombination are used to explain the electroluminescence from silicon MOS tunneling diodes.
The alert did not successfully save. Please try again later.
Ching-Fuh Lin, Miin-Jang Chen, Ming-Hung Lee, Cheewee Liu, "Electroluminescence at Si bandgap energy from metal-oxide-semiconductor tunneling diodes," Proc. SPIE 4293, Silicon-based and Hybrid Optoelectronics III, (18 May 2001); https://doi.org/10.1117/12.426934