You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 August 2001Modeling and characterization of piezoelectric and magnetostrictive induced-strain actuators
This paper presents the results of theoretical modeling and experimental characterization of PiezoSystems Jena P-177-00 large stroke piezoelectric actuator and of Etrema AA-140J025-ES1 large stroke/large power magnetostrictive actuator. An improved smart-material actuators measurement method suited for static and low frequency actuation was devised. Analytical and finite element modeling (ANSYS) of the experimental setup to determine stiffness component characteristics was performed. The output displacements of the active material actuators were recorded in quasi-static and dynamic regimes, under varied pre-stress level, voltage and frequency values. The measurements indicated a strong dependence of the actuator stiffness and piezoelectric properties on the electromechanical loading conditions. The study also identified and calculated the parameters of the induced strain actuators electro-mechanical model. These parameters are necessary for performing design optimization to achieve maximum energy transfer and minimum power requirements. Experimentally verified data characterizing piezoelectric and magnetostrictive actuators in the full stroke/full power regime required for designing an effective airborne induced strain activated aerodynamic control system for air and space vehicles is provided.
Victor Giurgiutiu andRadu O. Pomirleanu
"Modeling and characterization of piezoelectric and magnetostrictive induced-strain actuators", Proc. SPIE 4327, Smart Structures and Materials 2001: Smart Structures and Integrated Systems, (16 August 2001); https://doi.org/10.1117/12.436569
The alert did not successfully save. Please try again later.
Victor Giurgiutiu, Radu O. Pomirleanu, "Modeling and characterization of piezoelectric and magnetostrictive induced-strain actuators," Proc. SPIE 4327, Smart Structures and Materials 2001: Smart Structures and Integrated Systems, (16 August 2001); https://doi.org/10.1117/12.436569