You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 July 2001Experimental and analytical methods for predicting mechanical properties of MRF damper
First part of this paper covers experimental studies on mechanical properties of two types of magneto-rheological fluid (MRF) dampers. One is a commercial built-in-pass type damper and the other an original by-pass type damper. In the test, they are subject to cyclic sinusoidal displacements with different amplitudes, velocities and intensities of magnetic field. Not only their hysteretic properties but also their quickness to respond to the applied magnetic field are examined. In the second part, two analytical methods to represent the mechanical properties of the dampers are presented. One is a semi-empirical method making use of a Bingham Model to simulate the hysteretic properties of the damper. The other one, an analytical method based on the theory of non-Newtonian fluid. A design formula to predict the resistance of the damper is so obtained as to take into consideration the damper's dimensions, the properties of the fluid and the intensity of the magnet field applied.
The alert did not successfully save. Please try again later.
Satsuya Soda, Norio Iwata, Katsuaki Sunakoda, Hiroshi Sodeyama, Hideo Fujitani, "Experimental and analytical methods for predicting mechanical properties of MRF damper," Proc. SPIE 4330, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways, (30 July 2001); https://doi.org/10.1117/12.434119