You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 July 2001System identification by video image processing
Emerging image processing techniques demonstrate their potential applications in earthquake engineering, particularly in the area of system identification. In this respect, the objectives of this research are to demonstrate the underlying principle that permits system identification, non-intrusively and remotely, with the aid of video camera and, for the purpose of the proof-of-concept, to apply the principle to a system identification problem involving relative motion, on the basis of the images. In structural control, accelerations at different stories of a building are usually measured and fed back for processing and control. As an alternative, this study attempts to identify the relative motion between different stories of a building for the purpose of on-line structural control by digitizing the images taken by video camera. For this purpose, the video image of the vibration of a structure base-isolated by a friction device under shaking-table was used successfully to observe relative displacement between the isolated structure and the shaking-table. This proof-of-concept experiment demonstrates that the proposed identification method based on digital image processing can be used with appropriate modifications to identify many other engineering-wise significant quantities remotely. In addition to the system identification study in the structural dynamics mentioned above, a result of preliminary study is described involving the video imaging of state of crack damage of road and highway pavement.
The alert did not successfully save. Please try again later.
Masanobu Shinozuka, Hung-Chi Chung, Makoto Ichitsubo, Jianwen Liang, "System identification by video image processing," Proc. SPIE 4330, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways, (30 July 2001); https://doi.org/10.1117/12.434109