You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 June 2001Resonant bimorph-driven high-torque piezoelectric rotary motor
A compact high-torque rotary motor was developed for use in large-displacement structural shape control applications. The main principle underlying its operation is rectification and accumulation of small resonant displacement of piezoelectric bimorphs using roller clutches as mechanical diodes. On the driving half of each cycle, the forward motion of the bimorph is converted to rotation of the shaft when the hub drive torque exceeds that of the load. On the recovery half of each cycle, a second, fixed, roller clutch prevents the load from backdriving the shaft. This approach substantially increased the output mechanical power relative to that of previous inchworm-type motor designs. Experiments to date, conducted under conditions of continuous operation at a 90 Vrms drive level, have demonstrated a stall torque of about 0.4 N-m, a no-load speed of about 750 RPM, peak power output greater than 1 W, and power density of about 5 W/kg. While not yet competitive with conventional motor technologies, this motor may also be fabricated in unusual (i.e., non-cylindrical) form factors, enabling greater geometric conformability than that of typical motors. The use of commercial roller clutches, piezoelectric bimorphs, and single frequency drive signals also results in a simple, inexpensive design.
The alert did not successfully save. Please try again later.
George Andre Lesieutre, Gary H. Koopmann, Eric Michael Mockensturm, Jeremy Eli Frank, Weicheng Chen, "Resonant bimorph-driven high-torque piezoelectric rotary motor," Proc. SPIE 4332, Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, (14 June 2001); https://doi.org/10.1117/12.429675