You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 July 2001Single-crystal piezoelectrics for advanced transducer and smart structures applications
Single crystal piezoelectrics based on xPb(Zn1/3Nb2/3)O3-(1-x)- PbTiO3 and xPb(Mg1/3Nb2/3)O3-(1- x)PbTiO3 show great promise for dramatically improving the performance of medical ultrasound transducers, sonar transducers, active flow control actuators, high strain energy density stack actuators, and microactuators. Improvements in crystal growth and manufacturing are yielding large numbers of crystals for device performance evaluations. Property variations have been minimized by identifying the sources of variations and designing manufacturing processes to eliminate property-degrading defects from the final components. Crystal size increases and cost reductions have resulted from replacing flux grown PZN-PT with PMN-PT crystals produced by the Bridgman method. Finally, low crystal stiffness has been shown to not be a hindrance in maintaining high properties under compressive prestress or in packaged devices such as epoxy bonded stack actuators.
The alert did not successfully save. Please try again later.
Wesley S. Hackenberger, Paul W. Rehrig, Ming-Jen Pan, Thomas R. Shrout, "Single-crystal piezoelectrics for advanced transducer and smart structures applications," Proc. SPIE 4333, Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, (11 July 2001); https://doi.org/10.1117/12.432745